200行Python代码实现2048

一、实验简介

1.1 实验知识点

本节实验中将学习和实践以下知识点:

  • Python基本知识
  • 状态机的概念

1.2 实验环境

  • python3.5

二、实验内容

是的,又是2048,这回我们是用 Python 实现,只需要200行代码,不用很麻烦很累就可以写一个 2048 游戏出来。

实验楼上已有的 2048 课程:

游戏玩法这里就不再赘述了,还会有比亲自玩一遍体会规则更快的的吗:)

2048 原版游戏地址:http://gabrielecirulli.github.io/2048

在 /home/shiyanlou/ 目录下创建游戏文件 2048.py

首先导入需要的包:

import curses from random import randrange, choice from collections import defaultdict

[{"name":"check if 2048.py exist","script":"#!/bin/bash\nls /home/shiyanlou/2048.py\n","error":"没有在 /home/shiyanlou/ 目录下新建 2048.py 文件"}]

2.1主逻辑

1.用户行为

所有的有效输入都可以转换为"上,下,左,右,游戏重置,退出"这六种行为,用 actions 表示

actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit']

有效输入键是最常见的 W(上),A(左),S(下),D(右),R(重置),Q(退出),这里要考虑到大写键开启的情况,获得有效键值列表:

letter_codes = [ord(ch) for ch in 'WASDRQwasdrq']

将输入与行为进行关联:

actions_dict = dict(zip(letter_codes, actions * 2))

2.状态机

处理游戏主逻辑的时候我们会用到一种十分常用的技术:状态机,或者更准确的说是有限状态机(FSM)

你会发现 2048 游戏很容易就能分解成几种状态的转换。

state 存储当前状态, state_actions 这个词典变量作为状态转换的规则,它的 key 是状态,value 是返回下一个状态的函数:

  • Init: init()
    • Game
  • Game: game()
    • Game
    • Win
    • GameOver
    • Exit
  • Win: lambda: not_game('Win')
    • Init
    • Exit
  • Gameover: lambda: not_game('Gameover')
    • Init
    • Exit
  • Exit: 退出循环

状态机会不断循环,直到达到 Exit 终结状态结束程序。

下面是经过提取的主逻辑的代码,会在后面进行补全:

def main(stdscr): def init(): #重置游戏棋盘
return 'Game'
def not_game(state): #画出 GameOver 或者 Win 的界面# 读取用户输入得到action, 判断是重启游戏还是结束游戏 responses = defaultdict(lambda: state)# 默认是当前状态, 没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit'#
对应不同的行为转换到不同的状态
return responses[action] def game(): #画出当前棋盘状态# 读取用户输入得到action
if action == 'Restart': return 'Init'
if action == 'Exit': return 'Exit'#
if 成功移动了一步: if 游戏胜利了: return 'Win'
if 游戏失败了: return 'Gameover'
return 'Game'
state_actions = {
'Init': init,
'Win': lambda: not_game('Win'),
'Gameover': lambda: not_game('Gameover'),
'Game': game
}
state = 'Init'#
状态机开始循环
while state != 'Exit': state = state_actions[state]()

2.2 用户输入处理

阻塞+循环,直到获得用户有效输入才返回对应行为:

def get_user_action(keyboard): char = "N" while char not in actions_dict: char = keyboard.getch() return actions_dict[char]

2.3 矩阵转置与矩阵逆转

加入这两个操作可以大大节省我们的代码量,减少重复劳动,看到后面就知道了。

矩阵转置:

def transpose(field): return [list(row) for row in zip(*field)]

矩阵逆转(不是逆矩阵):

def invert(field): return [row[::-1] for row in field]

2.4 创建棋盘

初始化棋盘的参数,可以指定棋盘的高和宽以及游戏胜利条件,默认是最经典的 4x4~2048。

class GameField(object): def __init__(self, height=4, width=4, win=2048): self.height = height #高 self.width = width #宽 self.win_value = 2048 #过关分数 self.score = 0 #当前分数 self.highscore = 0 #最高分 self.reset() #棋盘重置

2.5 棋盘操作

1.随机生成一个 2 或者 4

def spawn(self): new_element = 4 if randrange(100) > 89 else 2 (i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0]) self.field[i][j] = new_element

2.重置棋盘

def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn()

3.一行向左合并

(注:这一操作是在 move 内定义的,拆出来是为了方便阅读)

def move_row_left(row): def tighten(row): # 把零散的非零单元挤到一块 new_row = [i for i in row if i != 0] new_row += [0 for i in range(len(row) - len(new_row))] return new_row def merge(row): # 对邻近元素进行合并 pair = False new_row = [] for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score += 2 * row[i] pair = False else: if i + 1 < len(row) and row[i] == row[i + 1]: pair = True new_row.append(0) else: new_row.append(row[i]) assert len(new_row) == len(row) return new_row #先挤到一块再合并再挤到一块 return tighten(merge(tighten(row)))

4.棋盘走一步

通过对矩阵进行转置与逆转,可以直接从左移得到其余三个方向的移动操作

def move(self, direction): def move_row_left(row): #一行向左合并 moves = {} moves['Left'] = lambda field: [move_row_left(row) for row in field] moves['Right'] = lambda field: invert(moves['Left'](invert(field))) moves['Up'] = lambda field: transpose(moves['Left'](transpose(field))) moves['Down'] = lambda field: transpose(moves['Right'](transpose(field))) if direction in moves: if self.move_is_possible(direction): self.field = moves[direction](self.field) self.spawn() return True else: return False

5.判断输赢

def is_win(self): return any(any(i >= self.win_value for i in row) for row in self.field) def is_gameover(self): return not any(self.move_is_possible(move) for move in actions)

6.判断能否移动

def move_is_possible(self, direction): def row_is_left_movable(row): def change(i): if row[i] == 0 and row[i + 1] != 0: # 可以移动 return True if row[i] != 0 and row[i + 1] == row[i]: # 可以合并 return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check['Left'] = lambda field: any(row_is_left_movable(row) for row in field) check['Right'] = lambda field: check['Left'](invert(field)) check['Up'] = lambda field: check['Left'](transpose(field)) check['Down'] = lambda field: check['Right'](transpose(field)) if direction in check: return check[direction](self.field) else: return False

2.6 绘制游戏界面

(注:这一步是在棋盘类内定义的)

def draw(self, screen): help_string1 = '(W)Up (S)Down (A)Left (D)Right' help_string2 = ' (R)Restart (Q)Exit' gameover_string = ' GAME OVER' win_string = ' YOU WIN!' def cast(string): screen.addstr(string + '\n') #绘制水平分割线 def draw_hor_separator(): line = '+' + ('+------' * self.width + '+')[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|') screen.clear() cast('SCORE: ' + str(self.score)) if 0 != self.highscore: cast('HIGHSCORE: ' + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2)

2.7 完成主逻辑

完成以上工作后,我们就可以补完主逻辑了!

def main(stdscr): def init(): #重置游戏棋盘 game_field.reset() return 'Game' def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) #读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态 return responses[action] def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game } curses.use_default_colors() game_field = GameField(win=2048) state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]()

2.8 运行

填上最后一行代码:

curses.wrapper(main)

运行看看吧!

$ python3 2048.py

三、全部代码

#-*- coding:utf-8 -*- import curses from random import randrange, choice # generate and place new tile from collections import defaultdict letter_codes = [ord(ch) for ch in 'WASDRQwasdrq'] actions = ['Up', 'Left', 'Down', 'Right', 'Restart', 'Exit'] actions_dict = dict(zip(letter_codes, actions * 2)) def get_user_action(keyboard): char = "N" while char not in actions_dict: char = keyboard.getch() return actions_dict[char] def transpose(field): return [list(row) for row in zip(*field)] def invert(field): return [row[::-1] for row in field] class GameField(object): def __init__(self, height=4, width=4, win=2048): self.height = height self.width = width self.win_value = win self.score = 0 self.highscore = 0 self.reset() def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn() def move(self, direction): def move_row_left(row): def tighten(row): # squeese non-zero elements together new_row = [i for i in row if i != 0] new_row += [0 for i in range(len(row) - len(new_row))] return new_row def merge(row): pair = False new_row = [] for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score += 2 * row[i] pair = False else: if i + 1 < len(row) and row[i] == row[i + 1]: pair = True new_row.append(0) else: new_row.append(row[i]) assert len(new_row) == len(row) return new_row return tighten(merge(tighten(row))) moves = {} moves['Left'] = lambda field: \ [move_row_left(row) for row in field] moves['Right'] = lambda field: \ invert(moves['Left'](invert(field))) moves['Up'] = lambda field: \ transpose(moves['Left'](transpose(field))) moves['Down'] = lambda field: \ transpose(moves['Right'](transpose(field))) if direction in moves: if self.move_is_possible(direction): self.field = moves[direction](self.field) self.spawn() return True else: return False def is_win(self): return any(any(i >= self.win_value for i in row) for row in self.field) def is_gameover(self): return not any(self.move_is_possible(move) for move in actions) def draw(self, screen): help_string1 = '(W)Up (S)Down (A)Left (D)Right' help_string2 = ' (R)Restart (Q)Exit' gameover_string = ' GAME OVER' win_string = ' YOU WIN!' def cast(string): screen.addstr(string + '\n') def draw_hor_separator(): line = '+' + ('+------' * self.width + '+')[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(''.join('|{: ^5} '.format(num) if num > 0 else '| ' for num in row) + '|') screen.clear() cast('SCORE: ' + str(self.score)) if 0 != self.highscore: cast('HIGHSCORE: ' + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2) def spawn(self): new_element = 4 if randrange(100) > 89 else 2 (i,j) = choice([(i,j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0]) self.field[i][j] = new_element def move_is_possible(self, direction): def row_is_left_movable(row): def change(i): # true if there'll be change in i-th tile if row[i] == 0 and row[i + 1] != 0: # Move return True if row[i] != 0 and row[i + 1] == row[i]: # Merge return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check['Left'] = lambda field: \ any(row_is_left_movable(row) for row in field) check['Right'] = lambda field: \ check['Left'](invert(field)) check['Up'] = lambda field: \ check['Left'](transpose(field)) check['Down'] = lambda field: \ check['Right'](transpose(field)) if direction in check: return check[direction](self.field) else: return False def main(stdscr): def init(): #重置游戏棋盘 game_field.reset() return 'Game' def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) #读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['Restart'], responses['Exit'] = 'Init', 'Exit' #对应不同的行为转换到不同的状态 return responses[action] def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == 'Restart': return 'Init' if action == 'Exit': return 'Exit' if game_field.move(action): # move successful if game_field.is_win(): return 'Win' if game_field.is_gameover(): return 'Gameover' return 'Game' state_actions = { 'Init': init, 'Win': lambda: not_game('Win'), 'Gameover': lambda: not_game('Gameover'), 'Game': game } curses.use_default_colors() # 设置终结状态最大数值为 32 game_field = GameField(win=32) state = 'Init' #状态机开始循环 while state != 'Exit': state = state_actions[state]() curses.wrapper(main)

四、用面向对象方法重构代码

Author: protream

< p > #- * -coding: utf - 8 - * -
import curses from
random
import randrange, choice# generate and place new
tile from collections
import defaultdict
letter_codes = [ord(ch) for ch in 'WASDRQwasdrq'] actions = ['Up',
'Left', 'Down', 'Right', 'Restart', 'Exit'
] actions_dict = dict(zip(letter_codes, actions * 2)) def get_user_action(
keyboard): char = "N"
while char not in actions_dict: char = keyboard.getch() return
actions_dict[char] def transpose(field): return [list(row) for row in
zip( * field)
] def invert(field): return [row[::-1]
for row in field
] class GameField(object): def init(self, height =
4, width = 4, win = 2048): self.height = height self
.width = width self.win_value = win self.score = 0 self
.highscore = 0 self.reset() def reset(self): if self.score &
gt;
self.highscore: self.highscore = self.score self.score = 0 self.field = [
[0
for i in range(self.width)
]
for j in range(self.height)
] self.spawn() self.spawn() def move(self, direction): def move_row_left(
row): def tighten(row): #squeese non - zero elements together new_row = [
i
for i in row
if i != 0
] new_row += [0
for i in range(len(row) - len(new_row))
]
return new_row def merge(row): pair = False new_row = []
for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score +=
2 * row[i] pair = False
else :if i + 1 & lt;
len(row) and row[i] == row[i + 1]: pair = True new_row.append(0)
else :new_row.append(row[i]) assert len(new_row) == len(row) return
new_row
return tighten(merge(tighten(row))) moves = {}
moves['Left'] = lambda field: [move_row_left(row) for row in field] moves[
'Right'] = lambda field: \invert(moves'Left') moves[
'Up'] = lambda field: \transpose(moves['Left'](transpose(
field))) moves['Down'] = lambda field: \transpose(moves 'Right') if direction in moves: if self.move_is_possible(
direction): self.field = movesdirection self.spawn() return
True
else :return False def is_win(self): return any(any(i & gt; = self.win_value
for i in row) for row in self.field) def is_gameover(
self): return not any(self.move_is_possible(move) for move in
actions) def draw(self, screen): help_string1 =
'(W)Up (S)Down (A)Left (D) Right ' help_string2 = ' (
R) Restart(Q) Exit ' gameover_string = '
GAME OVER ' win_string = '
YOU WIN!' def cast(string): screen.addstr(string + '\
n ') def draw_hor_separator(): line = ' + ' + (' + -- -- --
' * self.width + ' +
')[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter +=
1 def draw_row(row): cast(''.join('|{: ^5} '.format(num) if num & gt; 0
else '| '
for num in row) + '|') screen.clear() cast('SCORE: ' + str(
self.score)) if 0 != self.highscore: cast('HIGHSCORE: ' + str(
self.highscore)) for row in self.field: draw_hor_separator() draw_row(
row)
draw_hor_separator() if self.is_win(): cast(win_string)
else :if self.is_gameover(): cast(gameover_string)
else :cast(help_string1) cast(help_string2)
def spawn(self): new_element = 4
if randrange(100) & gt;
89
else 2(i, j) = choice([(i, j) for i in range(self.width) for j in
range(self.height) if self.field[i][j] == 0
]) self.field[i][j] = new_element def move_is_possible(self,
direction): def row_is_left_movable(row): def change(i): #
true
if there
'll be change in i-th tile if row[i] == 0 and row[i + 1] != 0: # Move return True if row[i] != 0 and row[i + 1] == row[i]: # Merge return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check['
Left
'] = lambda field: \ any(row_is_left_movable(row) for row in field) check['
Right '] = lambda field: \ check' Left ' check['
Up '] = lambda field: \ check' Left ' check['
Down '] = lambda field: \ check' Right ' if direction in check: return checkdirection else: return False def main(stdscr): def init(): #重置游戏棋盘 game_field.reset() return '
Game
' def not_game(state): #画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) #读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) #默认是当前状态,没有行为就会一直在当前界面循环 responses['
Restart '], responses['
Exit '] = '
Init ', '
Exit
' #对应不同的行为转换到不同的状态 return responses[action] def game(): #画出当前棋盘状态 game_field.draw(stdscr) #读取用户输入得到action action = get_user_action(stdscr) if action == '
Restart ': return '
Init ' if action == '
Exit ': return '
Exit
' if game_field.move(action): # move successful if game_field.is_win(): return '
Win ' if game_field.is_gameover(): return '
Gameover ' return '
Game ' state_actions = { '
Init ': init, '
Win ': lambda: not_game('
Win '), '
Gameover ': lambda: not_game('
Gameover '), '
Game
': game } curses.use_default_colors() # 设置终结状态最大数值为 32 game_field = GameField(win=32) state = '
Init ' #状态机开始循环 while state != '
Exit ': state = state_actions[state]() curses.wrapper(main)

< p > 四、 用面向对象方法重构代码 < /p>

< p > < strong > Author: protream < /strong>

<!-- wp:paragraph -->
< p > #- * -coding: utf - 8 - * -
import random

import
curses from itertools
import chain class Action(object): UP = 'up'
LEFT = 'left'
DOWN = 'down'
RIGHT = 'right'
RESTART = 'restart'
EXIT = 'exit'
letter_codes = [ord(ch) for ch in 'WASDRQwasdrq'] actions = [UP, LEFT,
DOWN, RIGHT, RESTART, EXIT
] actions_dict =
dict(zip(letter_codes, actions * 2)) def init(self, stdscr):
self.stdscr = stdscr def get(self): char = "N"
while char not in self.actions_dict: char = self.stdscr.getch() return
self.actions_dict[char] class Grid(object): def init(self,
size): self.size = size self.cells = None self.reset() def reset(
self): self.cells = [
[0
for i in range(self.size)
]
for j in range(self.size)
] self.add_random_item() self.add_random_item() def add_random_item(
self): empty_cells = [(i, j) for i in range(self.size) for j in
range(self.size) if self.cells[i][j] == 0
](i, j) = random.choice(empty_cells) self.cells[i][j] = 4
if random.randrange(100) & gt; = 90
else 2 def transpose(self): self.cells = [list(row) for row in zip( *
self.cells)] def invert(self): self.cells = [row[::-1]
for row in self.cells
]@ staticmethod def move_row_left(row): def tighten(row): new_row = [
i
for i in row
if i != 0
] new_row += [0
for i in range(len(row) - len(new_row))
]
return new_row def merge(row): pair = False new_row = []
for i in range(len(row)): if pair: new_row.append(2 * row[i])# self.score +=
2 * row[i] pair = False
else :if i + 1 & lt;
len(row) and row[i] == row[i + 1]: pair = True new_row.append(0)
else :new_row.append(row[i]) assert len(new_row) == len(row) return
new_row
return tighten(merge(tighten(row))) def move_left(self): self.cells = [
self.move_row_left(row) for row in self.cells
] def move_right(self): self.invert() self.move_left() self.invert() def move_up(
self): self.transpose() self.move_left() self.transpose() def move_down(
self): self.transpose() self.move_right() self.transpose()@ staticmethod def row_can_move_left(
row): def change(i): if row[i] == 0 and row[i + 1] != 0: return
True
if row[i] != 0 and row[i + 1] == row[i]: return True
return False
return any(change(i) for i in range(len(row) - 1)) def can_move_left(
self): return any(self.row_can_move_left(row) for row in self
.cells) def can_move_right(self): self.invert() can =
self.can_move_left() self.invert() return can def can_move_up(
self): self.transpose() can = self.can_move_left() self
.transpose() return can def can_move_down(self): self.transpose() can =
self.can_move_right() self.transpose() return can class Screen(
object): help_string1 =
'(W)up (S)down (A)left (D)right'
help_string2 =
' (R)Restart (Q)Exit'
over_string = ' GAME OVER'
win_string = ' YOU WIN!'
def init(self, screen = None, grid = None, score = 0, best_score =
0, over = False, win = False): self.grid = grid self.score =
score self.over = over self.win = win self.screen = screen self.counter =
0 def cast(self, string): self.screen.addstr(string + '\n') def draw_row(
self, row): self.cast(''.join('|{: ^5}'.format(num) if num &
gt; 0
else '| '
for num in row) + '|') def draw(self): self.screen.clear() self
.cast('SCORE: ' + str(self.score)) for row in self.grid.cells:
self.cast('+-----' * self.grid.size + '+') self.draw_row(row) self
.cast('+-----' * self.grid.size + '+') if self.win: self.cast(
self.win_string)
else :if self.over: self.cast(self.over_string)
else :self.cast(self.help_string1) self.cast(self.help_string2) class GameManager(
object): def init(self, size = 4, win_num = 2048): self.size =
size self.win_num = win_num self.reset() def reset(self): self.state =
'init'
self.win = False self.over = False self.score = 0 self.grid = Grid(
self.size) self.grid.reset()@ property def screen(self):
return Screen(screen = self.stdscr, score = self.score, grid =
self.grid, win = self.win, over = self.over) def move(
self, direction): if self.can_move(direction): getattr(self.grid,
'move_' + direction)() self.grid.add_random_item() return True
else :return False@ property def is_win(self): self.win = max(chain( *
self.grid.cells)) & gt; = self.win_num
return self.win@ property def is_over(self): self.over = not any(self
.can_move(move) for move in self.action.actions) return self.over def can_move(
self, direction): return getattr(self.grid, 'can_move_' +
direction)() def state_init(self): self.reset() return
'game'
def state_game(self): self.screen.draw() action = self.action.get() if action
== Action.RESTART: return 'init'
if action == Action.EXIT: return 'exit'
if self.move(action): if self.is_win: return 'win'
if self.is_over: return 'over'
return 'game'
def restart_or_exit(self): self.screen.draw() return 'init' if self.action.get() == Action.RESTART else 'exit' def state_win(self): return self._restart_or_exit() def state_over( self): return self._restart_or_exit() def call(self, stdscr): curses.use_default_colors() self.stdscr = stdscr self.action = Action(stdscr) while self.state != 'exit': self.state = getattr(self, 'state' + self.state)() if name
== 'main': curses.wrapper(GameManager()) < /p>

五、License

本作品在 GFDL1.2 协议下授权使用。